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Absbract. We investigate how dissipation and nonlinearity affect an electromagneticpertus- 
bation propagating into a saturated ferromagnet in the presence of an external magnetic 
 field We study the problem in (1 + 1) and (2+ 1) dimensions. It is found that at lowe~t 
order of the perturbation theory, the Burgers’ equation in ( I  + 1) dimensions governs such 
dynamics. In (2+ I) dimensions we show that the phenomena obeys a nonlinear evolution 
equation (non-integrable) of Burgers type. We give exad solutions which desuibe in (1 + 1) 
dimensions the propagation of a travelling electromagnetic wave and the coalescence of N 
travelling fronts and in (2+ 1) dimensions the propagation of a nearly  one-dimensional 
travelling front. We establish, in terms of the physical parameters of the system, whether 
breaking or diffusion of the initial perturbation dominates. 

1. Introduction 

The study of electromagnetic wave propagation in ferromagnet is not only interesting 
from a theoretical point of view but also from a practical point of view, particularly in 
connection with the behaviour of ferrite devices at microwave frequencies [l, 21 such 
as ferrite-loaded waveguides. 

The propagation of electromagnetic waves in a ferromagnet obeys nonlinear equa- 
tions of dispersion and dissipation. The linear theory has been investigated extensively 
in 131 and t h i s  approach provided a good explanation for phenomena such as cut-offs, 
resonances and wave-focusing. 

Recently I Nakata began a rigorous study of the nonlinear case. In [4] he investigated 
propagation of nonlinear electromagnetic waves of long wavelength in a saturated 
ferromagnet taking into account nonlinearity and dispersion and in [5] examined the 
effect of dissipation on such propagation. The 6nal result was the reduction of the 
evolution equations to a nonlinear intego-differential equation (non-integrable) of 
modi6ed Kdv type. 

In this paper we investigate the effects of dissipation and nonlinearity on the propa- 
gation of a small  electromagnetic perturbation in a saturated ferrite, in the presence of 
an external constant magnetic field, directly, and not only as a small correction to the 
evolution obtained considering nonlinearity and dispersion, which is the point of view 
taken in 151. 

We do this using the reductive perturbation method. The stretching of the coordi- 
nates is based on a Gardner-Morikawa transfomation characterized by one of the 
three phase velocities allowed by the linear system and ditrerent from that considered 
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in [4]. For this phase velocity, the reductive perturbation method shows that breaking 
can be balanced only by dissipation. We study the problem in one and two spacial 
dimensions. 

The main results obtained are: in (1 +1) dimensions (x and t variables) we prove 
that the dynamics of an electromagnetic perturbation of one initial static state of a 
saturated ferrite obeys the Burgers’ equation. Hence an initial perturbation of the step 
profile type diffuses into a permanent shock Taylor-type profile and N initial perturba- 
tions coalesce. We characterize the velocity and amplitude of these travelling waves as 
functions of the p5ysical parameters of the system. We show that if the angle between 
the direction of propagation of the perturbation and the extemal magnetic field is close 
to zero, diffwion is dominant. If this angle is close to s/2 the perturbation propagates 
without deformation. In (2+ 1) dimensions (two space variables x and y and a time 
variable t) ,  we prove that the evolution of a small electromagnetic perturbation obeys 
a nonlinear evolution equation of Burgers’ type [q (non-integrable), of which we give 
particular explicit solutions that describes a nearly one-dimensional travelling wave 
front. The transverse coordinate y is weaker than the x coordinate and we show that 
it must be orthogonal to the plane determined by the extemal (constant) magnetic field 
and the direction of propagation of the perturbation. 

The paper is organized as follows. In section 2 we give the mathematical formulation 
of the system. In section 3 we study this system by using a perturbation theory in (I + I) 
dimensions. In section 4 we construct the (1 + 1) travelling waves solution and we show 
the coalescence of N of such waves. In section 5 we study the problem in (2+ 1) 
dimensions. Finally in the appendix we give the technical details of the derivation of 
the evolution equation in the (2+ 1) dimensional case. 

H &blond and M Manna 

2. Mathematical formulation of the system 

The general form of Maxwell’s equations in MKS units reads 

in which E, B, D and H have their standard meaning. The constitutive equations in 
the ferromagnet for E, D and H, 5 are given by 

D=kE (2.3) 

B=po(H + M) (2.4) 
where we shall assume that E is the scalar permittivity of the ferromagnet, PO is the 
magnetic permeability in vacuum, and M is the magnetization density in the ferromag- 
net. W e  considered a ferromagnet with saturated magnetization density. In the presence 
of an extemal magnetic field the magnetization density is governed by the torque 
equation [ 11 
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The second term on the right-hand side of equation (2.5) is a damping term which was 
fmt proposed by Landau and Lifchitz [7] for expressing the experimental fact that the 
magnetization M has a tendency to eventually line up with W. In (2.5) o(o<O) is a 
parameter which determines the magnitude of damping, 6 is the gyromagnetic ratio 
and M=1Ml. Also in (2.5) we do not take into account either the term coming from 
the magnetic anisotropy or the one which represents the inhomogeneous exchange 
interaction. The first is neglected because we consider an isotropic ferromagnet and 
the second because the space scale associated with the electromagnetic perturbation 
considered here (typically that of electromagnetic waves in femtes) substantially exceeds 
the space scale associated with the inhomogeneous excliange interaction (typically that 

~ 
~ of spin waves). 

Taking the curl of (2.2) and using (2.1), (2.3) and (2.4) we. have 

(2.6) 

where c= ( 2p0)-”’ is the specd of light based on the dielectric constant of the ferromag- 
net. If the magnetization were zero, then V .  W = O  and (2.6) would be the linear wave 
equation, satisfied by isotropic, dispersionless transverse waves, propagating at speed 
e. Such is not the case and equations (2.5) and (2.6) are a system of complicated 
nonlinear partial differential equations for M and W describing electromagnetic wave 
propagation in a saturated ferromagnet, which we are going to study with a perturbation 
theory. 

Finally, we observe that we can obtain the dispersion relation of the system. Let us 
consider in the (1 + 1)-dimensional case (x.  t )  a constant solution of (2.5), (2.6) given 
by the constant vectors Ho/p06, Mo/p06 (the factor 1/p06 is included for convenience) 
with 

1 a2 
c2 atz -V(V. w ) + v2w =- - (#U + M ) 

Ho = aMo (2.7) 
and with MO, HO in the form MO= MO(COS p, sin p, 0) and Ho= &(cos p, sin tp,O). 

given by 
We suppose another solution of (2.5), (2.6) as being a small perturbation of (2.7) 

(2.8) 

(2.9) 
where m, h are real vectors of components (mx,  my, ma) and (hx, h,, h:) and k, and o 
are, respectively, the wavenumber and the frequency of the wave. 

Substituting (2.8) and (2.9) in (2.5) and l2.6) and disregarding nonlinear terms in 
m, h we have the system 

M = M ~ + ~  ei(k-m(k)=C 

W=Ho+h ei(ki-m(*)ct) 

o 
iwcm =MO h (h- am) +- Moh(Moh(h-am)) 

PoGMo 
(2.10) 

w2(hx + mJ = 0 

wz(hy+my) = p h y  (2.12) 

(2.11) 

w2(h,+m,)=#hh,. (2.13) 
From (2.11), (2.12) and (2.13) we have m,, my ,m.  as functions of h,, h,, h:, and 

their substitution in (2.10) give us a linear system of equations for the unknowns 
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h,, hy, h,, which reads 
h,{-co'+pyry(02+a@)}- hy{pyr,[02(1 + a )  -&I} 

+h,{py[w2(l+a)-irp]}=0 
-hx{pxry(02+ak2)} +hy{k2-o'+pzz[02(1 +a)-&]}  

+h.{p,[cu'(l + a )  - &I} = O  

hx{py(w2+ap)} -hy{p.1w2(1 +a)-apl} 
+hz{p-w2+ (p,r,+p,ry)[ru2(l +a)  - u p ] }  = 0 

where the auxiliary vectors p and r are defined by 

(2.14) 

(2.15) 

(2.16) 

i p=- -Mo r=aMo. 
O C  

This system of equations for h,, hy and h: has a non-trivial solution if and only if 
its determinant is zero. This conditions yields, for the dispersion relation of the system 
(2.5), (2.6) in (1 + 1) 
o'~(0'-~)'-M,'(1 + ?M,')[w2(l + a)-ak21[0~(1 + a ) - P ( a  +sin2 q)] 

+ i~oc~,'(o2-P)[2w'(1 + a )  -k2(2a +sin2 q)] = 0. (2.17) 

Now, we search for solutions of (2.17) such that the phase velocity w(k)/k remains 
finite in the long wavelength limit k=O(&) with &<cl: 

k 

There are two solutions of this type for (2.17), which read 
m2(k) a - +O(&) P l + a  

+O(&).  w'(k) a +sin2 Q, 

P l + a  
-- - 

(2.18) 

(2.19) 

In the perturbation theory developed in section 3 we h d ,  naturally, the velocity 
(2.19) and OUT results are valid for perturbations having a long wavelength l i t  of 
phase velocity given by (2.19). 

In the (2+ 1)-dimensional case an identical procedure (but, more laborious algebra- 
ically) yields, at order &', the relations 

(2.20) 

(2.21) 

where s=Mo/Mo, and k,l of order E are the wavenumbers in the x , y  directions. 
Assuming l<<k, we obtain from (2.21) with sin' b=(~>~+(r")~ 

which is the velocity found in section 5, formula (5.9) with 4=p+lr. 
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3. Perturbation seheme and the (1 + 1) Burger equation 

In this section we study the system (2.5), (2.6) by using a perturbation theory in which 
the solution is expanded as a formal asymptotic series. For details of this type of 
approximation see [SI. 

Let us consider that there exists a solution of (2.5), (2.6) expanded in a series in 
powers of the small parameter E. - 

M(5, z)= f f l M n ( 5 ,  T) (3.1) 
" - 0  

The fields MO and Ha characterize the initial state of the system and the small parameter 
E measures the normalized amplitude of the applied magnetic perturbation. In (3.1), 
(3.2)Mn, H,arethree-componentvectors,M,=(K, M ,  AC), H , , = ( E ,  E ,  E).TThis 
solution is considered as a function of the slow variables 5,  z introduced through the 
stretching 

5 = E ( X - / 3 t )  (3.3) 

z = 2 t  (3.4) 

where the velocity p will be determined later as a solvability condition of equations 

c)M, (poS/c)H, ct and o / p o S )  into (2.5), (2.6) and collecting powers of E" we can 
solve it order by order. The conditions on M,, H. for (-.-CO are: M., Hn and all their 
derivatives go to zero for n=2,3,4, . . . MO, HO go to m, h and MI -0, &-.I where I 
is a constant vector parallel to m. A more general choice for the limits of M I ,  HI  at 
~ - - c o  would complicate drastically the calculus without giving more relevant 
conclusions. 

(2.5), (2.6). Substituting (3.1), (3.2), (3.3) and (3.4) (rescaling M, W, t ,  c into @OS/ 

At order zero we have the system: 

MO A Ha - cr[Y MO - M a o  = 0 1 (3.5) 

a* 
- (H;+M:)=O (3.6) at2 

a2 
- (yHb+MY)=O (3.7) at2 

- az (yHi+Mi)=O 
at2 

where y= 1 - /3-2.  Dot denotes, as usual, the scalar product and Mo=IMoI, H o = I H o l .  
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Multiplying (dot product) equation (3.5) by HO we obtain 

(3.9) 

( M , , - H ~ ) ~ =  M;H; (3.10) 

and this implies that MO and €Io are colinear, which can be written as 

Ho=a(g, wo. (3.11) 

By integration of equations (3.6), (3.7) and (3.8) we obtain the relations (using (3.11)) 

l + f f  M x - -  0 -  m“ (3.12) 

(3.13) 

M‘- 0-0 (3.14) 

where 

a= l i  a 
e-.-m 

and we suppose that p = 1 + a y  J.0. We have appropriately chosen the Cartesian coordi- 
nate. system such that m can be written as a vector of the form m=(m“, my, 0). 

At order E the equation (2.5) gives (using the results of order zero) 

a U 

ac MO -/3 - A (HI -mi) + - MO A [MO A (Hi - MI)].  (3.15) 

Multiplying by MO we obtain that MO is a constant vector, thus M$ is a constant and 
Mi=&. Using (3.12), (3.13) and (3.14) we obtaib the equation 

(3.16) 

Consequently ;1 satisfies an equation of second order with constant coe5cients, and 
thus it is a constant and A=a. Therefore Mo=m and Ho=am are constant vectors 
characterizing the initial static state of the system. Using this fact in (3.15) we obtain, 
after multiplication by (HI - aMl) ,  that (Hi - aM,)  and m are colinear: 

[m.(Hr - aM,)]’= (m)’(I& - aMI)’. (3.17) 

Let us thus definef( E, 5 )  as (the factor (1 + a)p is introduced for convenience) 

HI - aM, = (1 + a)pf( 5, z)m. (3.18) 

At the same order 8 we obtain from (2.6) : 

(3.19) 

(3.20) a a (H$+Mg)=O a - ( y H y + M f ) - - - -  - a p  . p ag ~7~ 



EM travelling waves in a saturated ferrite 6457 

(3.21) 

Using the fact that HO and MO are constant and that for 5-t-w M,+O and Hl+I (I 
parallel to m) and also that all derivatives of M,,, H,(Vn) go to zero we can integrate 
equations (3.19), (3.20) and (3.21) 

H;+M;=l" (3.22) 

y H f +  MT = yIy (3.23) 

yH.Hi+Mf=yr.  (3.24) 

The limit E+-w in (3.18) gives 

I"=(l+a)pf~" (3.25) 

P = ( l  +a)p  fdn' (3.26) 

l'=O (3.27) 

or 

(3128) 

where& isf(5, T) for c+-m. Using (3.25), (3.26), (3.27) and (3.18)in (3.22), (3.23), 
(3.24) we obtain finally 

H;=pm"( f+ a&) ~ M ;  = pm"(fo - f j (3.29) 

HT=(l + a)"(f+arfo) MT=y(! + a ) d ( & - f )  (3.30) 

(3.31) M; - H f = O  1-0. 

The above equations constitute the complete solution  in^ the order E. In the next order 
the equations (U), (2.6) give 

-p - M I  = -mA (Hz- aM2) - M I  A HI +o - A  [m A (H2-aM2) +MI A H I ]  
. .  a m 

aE m 
(3.32) 

M ; =  -Hg (3.33) 

MS=-yH1,. 

Introducing now the parameter q through 

(3.34) 

(3.35) 

~~, , . (3.36) . .  mX=m cos 9 

d = m  sin 9 (3.37) 
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we have from (3.32), (3.33), (3.34) and (3.35) the following h e a r  system for the H2 
components 

H Leblond and M Manna 

=-pm(sin q))H;+a sin qbm(cos q)H$-(l+a)m(sin q)E-Q,] (3.38) 

+O(COS q ) [ - p m ( ~ s  q)H$+(l+a)m(sin q))H;+Q1 (3.39) 

(3.40) 
Q 

0 = -p(cos p)H$+ (1 + .)(sin q)H;- up H;+- 
m 

where Q, is defined by 

@(e, r)=(1+a)m2(cos qsin q ) E  j' af(t', 2) dC'+(l-y)pf(f-h)}. (3.41) 

From h e a r  algebra we can see that the system (3.38), (3.39), (3.40) has a non-trivial 
solution if and only if, the velocity p is given by 

B -_a5 

Under this condition we obtain that the non-trivial solution satisfies 

(3.42) 

1 ,,:. , , (3.43) 

Now multiplying equation (2.5) at order 61 by m we obtain 

a a d -p - m*M2+- m*Ml = -m-(Ml A Hz + M2 A H I )  +- m.[Ml A U ]  a t  a7 m 

with U=m A (H2- aM2) + Ml A H I .  

tion equation for the function f ( 5.7) 

(3.45) 

Using in (3.45) the results from previous orders we finally obtain a nonlinear evolu- 

This is the well known Burgers' equation [9]. This equation includes nonlinearity and 
dissipation in the simplest way, and it can be thought of as a nonlinear version of the 
heat equation. 
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4. Travelling-wave solutions and their coalesceuce 

Our aim in this section is to calculate solutions of the Burgers’ equation (3.46). Before 
doing this we will write it in its canonical form. First of all we return to the original 
fields, making the inverse transformations 

a f  ay af af 
a7 at’ at at 

p - - 4 - - r f - + s - = O  

with p ,  q, r and s given by 

1 
P = -  

PO6 

-oc  cos2 9 
q=(j&P+o2)2m(l +a)’ 

r = - -  3 (sin’ a,)(cos2 9)(1+a)’’’ 
2 (a  +sin’ 9)3’2 

(sin2 9)(c0s2 a,)()(l+ a)”2 fo. (a+sin2 9)3/2 
s=- 

.- (4.2) 

(4.3) 

(4.4) 

(4.5) 

Note that q is a real positive constant (o<O), which goes to zero for 040 (9#7r) thus 
in this case breaking is dominant. In the case o#O, 9-0 or a,-n we would expect 
diffusion to dominate. For 9-a/2 all the coefficients are zero and the perturbation 
propagates without deformation. 

A Galilean transformation allows us to eliminate. the last term of (3.46) and to 
simplify also the rest of the coefficients. It reads (a,#*%, fn/2)  

X = a & + a l ,  z 

T= a2z  

with aO=-r-I, a1 =s(rp)-’, a2=p-l. We obtain thus 

where f ; f o  for X+-m and the coefficient of diffusion p is given by 
~~ 

”9, sin4 a, cos2 -2oc a , ( p ~ +  0 2 )  (a;:; m)l (4.9) 

From the bilinear form of equation (4.8) [ 10,111 we can find its one travelling wave 
solution which in laboratory coordinates reads 

(4.10) 
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with 
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r ]  = A ( x -  ut). 

(4.1 1) 

(4.12) 

where h is a measure of the magnetic perturbation for x+-00 

h = ~ l = ~ f o i n p ( l + a ) .  (4.13) 

The functionfis the Taylor shock profile solution of Burgers’ equation which is gen- 
erally named a ‘shock profile’. Note thatfis completely characterized as a function of 
the initial inputfo and the physical parameters of the problem. 

Another form of solution to (4.8) is found using the nonlinear Hopf-Cole trans- 
formation which reduces (4.8) to a linear heat equation [12]. In our case the Hopf- 
Cole transformation and the associated heat equation reads 

(4.14) 
a 
ax f ( X ,  T ) = - ~ P  - q(x, T )  

(4.15) 

Then, instead of the nonlinear equation (4.8) we can study the linear equation (4.15). 
For example, the solution of the initial value problem of (4.8) is reduced to solving the 
following three steps: first, knowing f ( X ,  0) =f(X) we evaluate q(X, 0) from (4.14). 
Second, via (4.15) and using the Fourier transform method we evaluate p(X, T). 
Finally, we recoverf(X, T )  from (4.14). The h a l  result is in our case 

(X-X,)? X ,  

S(X’ ;X ,  T ) = I 0  f ( 1 )  dl+ 2T 

(4.16) 

(4.17) 

Many types of solution can be obtained from (4.16) choosing appropriatelyf(X) in 
(4.17). Forf(X) a step function: 

we obtain 

(4.18) 

(4.19) 
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with B ( X )  given by 

(4.20) 

The interest of this solution, corresponding to an initial step, is that it ditruses into a 
steady profile for T+m (‘far-field limit’). In fact, we can see from (4.20) that for X/ 
T fured between the limits 

X 
T O<-<h (4.21) 

the function e(X)-O as T-rm and we obtain 

f (X, T )  =& 2 [ 1 - tanh[ $ (X -$)I}. (4.22) 

This asymptoptic form of the solution obtained via the Hopf-Cole transformations is 
exactly the expression (4.10) if we write it in laboratory coordinates x, t. 

The expression (4.10) for f allows us to obtain expressions for all x and t for the 
fdI magnetization perturbation and the fuII magnetic pertnrbation of order E defined 

(4.23) 

(4.24) 

by 

H(x, t) = E H ~ ( x ,  t )  

M(x, t )  = EM&, t )  

hcotq  1 - M(x, 0 -  -(sin 9, -cos 9,O). 
l + a  l+en  

(4.25) 

(4.26) 

The N travelling wave solutiom corresponding to N initid inputs ~,>h >. . . >fN for 
x+-m are given by 

with 

Vi’ -ah,(x- U$). 

The expressions for h;, a and U,  are 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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and H(x, r), M(x, t )  have the following forms 
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(4.31) 

(4.32) I N d d x - w )  

(a+sin* 9) 1 +y, e-di(x-wo - aho cos2 9 
x=, hi e- 

( a + ] )  sin cp 
Hy(x, t )=  

H y x ,  t )  = M'(x, t)  = 0 (4.33) 

(4.34) 

(4.35) 

It is easy to see because vo > U, >. . . > vN that the expressions (4.3 I j to (4.35) represent 
the coalescence of N travelling fronts. We note that it i s  natural that the parameter E 
appears in the formulas for Hand  M, since these expressions are valid in laboratory 
coordinates x and t .  For certain systems the smallness of E is made preckrelating it 
with some (small) physical parameter of the model (for example, with the wavenumber 
when we consider long wave in shallow water). Here such identification is not possible 
and we identify it with the size of the initial perturbation. 

5. Extension to x, y ,  f: a multidimensional nonlinear Wusion eqnatian 

In the (1 + 1)-dimensional case the x (or 5) axis has been chosen along the direction 
of propagation of the initial perturbation, the very existence of which introduces a 
geometrical anisotropy in the medium. This fact, can be studied by considering the 
system in (2+ 1) dimensions: two space variables x and y and a time variable t where 
the transverse coordinate y is weaker than the x coordinate, and represents a kind of 
transversal perturbation. 

Let us consider that there exists a solution of (2.5), (2.6) expanded in a series in 
powers of E given by 

m 

M(5, e, ~ ) = M n ( t ,  5, z)+ En+'M,,(5, 5, z)=Mo+EzMj+E3Mz+. . . (5.1) 

M(c,c, z ) = H o ( c , r ,  z)+ E"+'H,,(t ,c,  z ) = H o f 8 H l + E ) H 2 + .  . . . (5.2) 

?I-1 

m 

"-1 

This solution is considered as a function of slow variables t, and z introduced through 
the stretching 

f = 2 ( x - v t )  (5.3) 

e= E3y (5.4) 

(5.5) 
4 z=E t. 
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A Crucial point is the expression for < because in it lies the definition of the weak 
dependence of the fields parameters on the coordinate y .  In the analogous problem 
studied in water theory 1131 the weak coordinate y is in the plane determined by the 
water at rest (this is the initial static state for this type of system) and it is orthogonal 
to the direction of propagation of the carrier wave. Here, we do not know the relative 
orientation of the transverse y (or 0 coordinate in the three-dimensional space x, y ,  z 
where the femte is immersed. This relative orientation and also the velocity U in (5.3) 
will be determined as solvability conditions of the system. 

Rescaling M, M, t and Q such as in the (1 + 1)-dimensional case and solving (2.5) 
and (2.6) order by order in E we obtain the following principal results (the precise 
assumptions made on the limits of Ma and If. at infinity and the technical steps involved 
are given in the Appendix) : 

(i) MO and HO are constant vectors characterizing the initial static state 

Mo=m (5.6) 

Ho= am (5.7) 

HI - aM1 = (1 + a)pf(  E ,  C, r )m (5.8) 

where m= (m”, d, d). The vectors HI and MI are related by 

wheref( 5, C, z) is an arbitrary function of 5, C, z. 
(i) One first compatibility condition gives the velocity U as 

a+sin’ 9, 

l + a -  
0’ = 

where the angle 9, verifies 

m“=m sin q 

( d ) * + ( ~ ) ’ = m ’  cos’ 9, m=lml. 

(E) One second compatibility condition gives 

d = O .  

(5.9) 

(5.10) 

(5.11) 

This equation shows that they (or c) coordinate is orthogonal to the plane determined 
by the external magnetic field Ho and the direction of propagation of the perturbation: 

(iv) Finally we obtain as evolution equation for f( c,c, z) the (2+ 1)dmensional 
Burger equation, also named in gas theory [14] the Zabolotskaya-Khokhlov equation: 

x (or 5). 

with 

A = l  

3 .  (a + 1)”’ 
2 (a + sin’ 9,)3’2 

B=-  (sin*  cos' 9,) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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D=-- 1 (l+a)”’ 
2 (a+sin2 q$/” 

(5.16) 

(we define q so that ma= +m cos q). 
The coefficient D is a diffusion coefficient in the 6 direction. In the case 0-0, C 

goes to zero but not D. This fact shows the character of the diffusion to be essentially 
geometric in the direction. 

The equation (5.12) is not integrable, but can be written in a bilinear form close to 
that of Hirota’s theory [lo, 111; we obtain thus a nearly one-dimensional travelling 
wave solution for it. In laboratory coordinates it reads 

(5.17) 

0 = -A(x + qy- Ut) (5.18) 

where A has the expression (4.11) and U is given by 

(5.19) 
po6h COS’ 9 

4m(a + sin’ q$l2(a + 1)3’2 

and q is an arbitrary constant. If qfO, (5.17) is an ‘oblique’ nearly one-dimensional 
travelling wave that does not decrease in the direction n/y = -q and moves at certain 
angle with relation to the x-axis. A solution corresponding to N such travelling waves 
moving all in the same direction can be constructed in the same way as in the (1 + 1)- 
dimensional case, and has very similar expression. It shows also the coalescence of the 
waves. 
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Appendix. Perturbation theory in the (2 + 1)dimensional case 

We reduce here the equations (2.5) and (2.6) to the (2+ 1) dimensions Burger equation 
with the conditions that M., A,,, n=O, 1,2,3, . . . and all their 5 derivatives go to zero 
for 5-+-m except MO, Ho going to m,p  for  CC and HI going to Iparallel to m as 
~ + - c o .  

At order zero equation (2.5) gives 

0 
MO A €To-- MO A (MO A Ho) = O  ( A 4  

P o l  

and this leads to H o = A ( 5 ,  6, ?)MO. The equation (2.6) gives the system 

(A.2a) 

(A.2b) 
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(A.2c) 

where y and a are the same as in the (1 + 1)-dimensional case (changing p to U). At 
order 2 we obtain from (2.5) 

U va&o =MO A (Hi - AM,) -- - MO A [MO A (HI - Mi)] (A.3a) 
lMol 

where atMO =aMo/a5. Multiplying by MO (dot product) we show that MO= constant = 
m.. The equation I Mol - Iml is 2 - -  2 .  

consequently i is the solution of a second-degree equation with constant coefficient. 
Thus A=constant = a, and Ho, MO are constant vectors characterizing the initial static 
state MO = mHo = am. Using this fact in (A.3a) we have that HI - aMl is proportional 
to m and we show equation (5.8) where we introduced for convenience the factor 
(1 + a)p .  Equation (2.6) gives at this order (using (5.8)) 

Hf = wYf + a h )  M?=pm"(fo-f) (A.3b) 

H;= (I+ a)&( f + ayfo) (A.3c) 

H; = (1 + a)&( f+ ay%) M i = y ( l +  a)mY(fo-f) (A.3d) 
M?= y(1 + a)m'(fo-f) 

with 

(A.3e) 

At order c3 we obtain 

('4.4) 
U m A (H2- aM2) -- m A (m A (H2- aH2j) = 0. 
m 

Thus 

(-4.5) 
~~ 

H2-aM2=(1+a)&E, C, r)m 
with g an arbitrary function of 6 ,  c, 7. The equation (2.6) gives ' 

5 a HZ=w%-;ImY .Ut', C, 7) d5' (A.6a) s, 
H4 = (1 + a)m'g 

(A.6b) 

(A.6c) 

(A.6d) 

(A.6e) 
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Equation (2.5) at order c4 give 

va5M1 = m  A (Ha- aM,) +Ml AH,-- m A [m A (Ha-aH3) + M ,  A H , ]  

H Leblond and M Manna 

a 
m 

Using (5.8) we show that the last term is zero and that m and a&, are orthogonals 

ma a& = 0. 
Equation ( A A )  determines v as in equation (5.9). 

The remaining equations at this order give 

where G and K are given by 

(A.9b) 

(A.9c) 

(A.lOa) 

5' 
(A.lOb) 

With these expressions and using (A.60, b, c) we can show (through a laborious algeb- 
raic step) that the equation (A.7) gives 

v p m X f = - p m Y H ; + p m ' H ~ + p ~ ~ G  +m'F 

K = J  l + a  j;_ d5' S,f&"> L 7) de". 

a +- {-(1 +a)(m')2H;+ptm"(";+mzH;) 

+ m ' [ p ( q 2 -  (1 + a)(m' ) ' ]~  - (m')*@+dmyF} 

vy(1 +a)"&= -m'(I + a)H;+pm"H;- (1 + a)mYm'G -mz@ 

m 
(A.lla) 

+E { p m Y m = Z  + ( 1  + a)mXmYH;-p(m 1 2  ) Ha Y 

m 

-mX[p(m')'-(1 + a ) ( m ~ ) ~ ] ~  - (m')2F+mxmy@) (A.1lb) 

v y ( 1  +a)m%=-pm"H<+(l +a)mYH';-(p(m~'-( l  + a)(m")')G 

+my@ -m"F +a {m"m'( 1 + a)HT-p [(d)' + (mJ)']H; 

+pmYmzH<+m"mYmz(l + a + p)G +dd@ +mYmzF} 

m 
(A.llc) 
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where 
(mr)z=(m92+(m=)2 

(m‘)2=(mx)z+(m=)2 

K pamy E=- 
l + a  

(A. 12a) 

(A.12b) 

(A.124 

The next order gives the equations 

va,Mz = m  x (Ha- aM4) + M I  x H2 + M2 x HI 

- a m  x [m x (H4- aM4) + MI x Hz+Mz X HII. (A.13) 
m 

using (5 .8)  and (A.5) we show that 
MI x H2+M2 x HI = ( 1  + a)pkMl +fMzl x m (A.14) 

thus 
a 
a, 

m * - Mz =.a. 

Now equation (A.15) yields the following condition: 

(A.15) 

(A.16) 

If we want non-trivial solutions we must choose d = O  and this gives equation (5.11). 
Finally multiplying equation (2.5) by m and isolating the order E‘ we obtain the equation 
(-vaEM3 +a,Ml)-m= -m.(Ml x H3 + M3 x H I )  

+E m*[Ml x (m x (H~- a~~ - @(I+ a ) j i ~ l ) ) ~ .  (A.17) 
m 

The lirst term in the right-hand side (using A.lla,  b, c)  is 

the second is 

-m*[M1 x (m x (H3-aM3-p(1 +a)jiW~))I 
m 

(A.19) U 

and the term in the left-hand-side is 



6468 H Leblond and M Manna 

where Q! is given by (A.12d) and P by 

(A.21) 

with (A.18), (A.19) and (A.20), we obtain the nonlinear evolution off( 4, (, 5 )  (5.12). 
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